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2 Departamento de Fı́sica Teórica, C-XI, Universidad Autónoma de Madrid Cantoblanco,
E-28049-Madrid, Spain

E-mail: adil.belhaj@uam.es and gdelmoral@delta.ft.uam.es

Received 9 August 2004, in final form 4 February 2005
Published 9 March 2005
Online at stacks.iop.org/JPhysA/38/2773

Abstract
Using an algebraic orbifold method, we present non-commutative aspects of
G2 structure of seven-dimensional real manifolds. We first develop and solve
the non-commutativity parameter constraint equations defining G2 manifold
algebras. We show that there are eight possible solutions for this extended
structure, one of which corresponds to the commutative case. Then, we obtain
a matrix representation solving such algebras using combinatorial arguments.
An application to matrix model of M-theory is discussed.

PACS numbers: 02.04.Gh, 11.25.−w

1. Introduction

It has been known for a long time that non-commutative (NC) geometry plays an interesting
role in the context of string theory [1] and, more recently, in certain compactifications of
the matrix formulation of M-theory on NC tori [2]. These studies have opened new lines of
research devoted, for example, to the study of supermembrane and Hamiltonian [3–9].

In the context of string theory [10], NC geometry appears from the study of the quantum
properties of D-branes in the presence of nonzero B-field. In particular, for large values of
B-field, the spacetime worldvolume coordinates no longer commute and the usual product
of functions is replaced by the star product of Moyal bracket. In the context of M-theory,
NC structure is also present [7, 8]. For instance, it can emerge from the L.C.G. Hamiltonian
of the supermembrane with fixed central charge. The central charge can be induced by
an irreducible winding around a flat even torus [6, 8, 9]. Using minimal immersions
associated with a symplectic matrix of central charges as backgrounds, a non-commutative
symplectic supersymmetric Yang–Mills theory, coupled to the scalar fields transverse to the
supermembrane, has been obtained. The main physical interest of this NC formulation of the
supermembrane relies on the discreteness of its quantum spectrum [4] and mainly [5] in clear
contrast to the commutative case [11, 12]. NC geometry has also been used to study tachyon
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condensation [13]. However, most of the NC spaces considered in all these studies involve
mainly NC Rd

θ [13] and NC tori Td
θ [14].

Recently efforts have been devoted to go beyond these particular geometries by
considering NC Calabi–Yau manifolds used in string theory compactifications. Great interest
has been given to building NC Calabi–Yau (NCCY) threefolds using the so-called algebraic
geometry method introduced first by Berenstein and Leigh in [15]. The NC aspect of this
manifold is quite important for the stringy resolution of Calabi–Yau singularities and the
interpretation of string states. In particular, in string theory on Calabi–Yau manifolds, NC
deformation is associated with open string states while the commutative geometry is in one-
to-one correspondence with closed string states. This formulation has been extended to
higher-dimensional manifolds being understood as homogeneous hypersurfaces in CPn+1 [16]
or more generally to hypersurfaces in toric varieties [17, 18].

The aim of this paper is to extend those results to the case of manifolds with exceptional
holonomy groups used in string theory compactifications. In particular, our main objective is
to develop an explicit analysis for a NC G2 structure. Using an algebraic orbifold method,
we present NC aspects of manifolds with G2 holonomy group. We develop and solve the
non-commutativity parameter constraint equations defining such structure algebras. We find
that there are eight possible solutions for this extended structure, one of which corresponds to
the commutative case. Using combinatorial arguments, we give matrix representations solving
such algebras. A matrix model of M-theory on G2 manifolds is found. Its generalization to
NC G2 is discussed.

The outline of the paper is as follows. In section 2, we present NC aspects of G2 structure
manifolds using an algebraic orbifold method. In section 3, we develop and solve the parameter
constraint equations defining such a structure. Then, we show that there are eight possible
solutions for this extended geometry. In section 4, we give matrix representations solving
such algebras. An application to matrix model of M-theory is discussed in section 5. Then,
we give our conclusion in section 6. We finish this work with an appendix.

2. NC G2 structure

In this section, we want to present a non-commutative geometry with the G2 holonomy
group. This may extend results of the NC Calabi–Yau geometries. First, the G2 structure
appears in a seven real dimensional manifold, with holonomy group G2, and plays a crucial
role in the M-theory compactification. In particular, it was shown that in order to get four-
dimensional models with only four supercharges from M-theory, it is necessary to consider a
compactification on such a structure manifold. As in the Calabi–Yau case, there are several
realizations and many non-trivial N = 1 models in four dimensions could be derived, from
M-theory, once a geometric realization has been considered. Before going ahead let us recall:
what is the commutative G2 structure? Indeed, consider a R7 parametrized by (y1, y2, . . . , y7).
On this space, one defines the metric

g = dy2
1 + · · · + dy2

7 . (1)

Reducing SO(7) to G2, one can also define a special real three-form as follows:

ϕ = dy123 + dy145 + dy167 + dy246 − dy257 − dy356 − dy347 (2)

where dyijk denotes dyi dyj dyk . This expression of ϕ comes from the fact that G2 acts as an
automorphism group on the octonion algebra structure given by

ti tj = −δij + f k
ij tk, (3)
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which yields the correspondence

f k
ij → dyijk. (4)

The couple (g, ϕ) defines the so-called G2 structure.
In what follows, we want to deform the above structure by introducing NC geometry. This

deformation may extend results of NC Calabi–Yau geometries studied in [15–20]. It could
also be used to resolve the G2 manifold singularities by non-commutative algebraic method.

Simply speaking, the G2 structure could be deformed by imposing the constraint

yiyj �= yjyi . (5)

Basically, there are several ways to approach such a deformed geometry. For instance, one
may use the string theory approach developed by Seiberg and Witten in [10]. Another way,
in which we are interested in this present work, is to use an algebraic geometry method based
on solving the non-commutativity in terms of discrete isometries of orbifolds [15, 16].

2.1. Constraint equations of NC G2 structure

To get the constraint equations defining NC G2 structure, we proceed in steps as follows. First,
we consider a discrete symmetry �, which will be specified later on, acting as follows:

� : yi → αiyi, αi ∈ �. (6)

The resulting space is constructed by identifying the points which are in the same orbit under
the action of the group, i.e., yi → αiyi . It is smooth everywhere, except at the fixed points,
which are invariant under non-trivial group elements of �. The invariance of the G2 structure
under � can define a non-compact seven-dimensional manifold with holonomy group G2. The
compactification of this geometry leads to models studied by Joyce in [21].3 Then, we see the
orbifold space as a NC algebra. We seek to deform the algebra of functions on the orbifold of
R7 to a NC algebra Anc. In this way, the centre of this algebra is generated by the quantities
invariant under the orbifold symmetry. In particular, we imitate the BL orbifold method
given in [15] to build a NC extension of (R7/�)nc. This extension is obtained, as usual, by
extending the commutative algebra Ac of functions on R7 to a NC one Anc ∼ (R7/�)nc. The
NC version of the orbifold R7/� is obtained by substituting the usual commuting yi by the
matrix operators Yi satisfying the following NC algebra structure4:

YiYj = �ijYjYi, (7)

where � is a matrix with further properties arranged in such a way as to preserve the G2

structure. In this way, �ij should satisfy some constraint equations defining the explicit NC
G2 structure. Here, we want to derive such parameter constraint relations. To do so, let us
start by writing down the trivial ones. Indeed, equation (7) requires that

�ij�ji = �ii = 1. (8)

However, non-trivial relations come from the structure defining the commutative geometry.
The crucial property in our method is that the entries of the � matrix must belong to �, i.e.,

�ij ∈ �. (9)

The invariance of the G2 structure under � requires that

�ij�ik = 1 for i �= j �= k, i, j, k = 1, . . . , 7 (10)

�ij�ik�i� = 1 for i �= j �= k �= �, i, j, k, l = 1, . . . , 7. (11)

Let us recall that �ij are coefficients of the matrix �, so no summation on the indices is
considered.
3 Other realizations of G2 manifolds have been developed mainly in the context of M-theory compactifications.
4 This algebra can be viewed as the Yang–Baxter equations.
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2.2. Solving the constraint equations

Before studying the corresponding matrix representation, we first solve the above parameter
constraint equations. This is needed to define explicitly the NC G2 structure. It turns out that
an explicit solution can be obtained once we know the elements of the centre Z(Anc). The
latter, which yields the commutative algebra generated by quantities invariant under the action
of �, is just the commutative G2 geometry. It may be a singular manifold while the geometry
corresponding to the NC algebra will be a deformed one. In other words, the commutative
singularity can be deformed in a NC version of orbifolds and can have a physical interpretation
in M-theory compactifications.

Let us now specify the discrete group �. In order not to loose contact with the commutative
case, consider � as Z2 ×Z2 ×Z2.5 This symmetry has been studied in [21] to construct
compact G2 manifolds. Since in this case, y2

i is invariant under �, then the corresponding
operator Y 2

i should be at the centre of the Z(Anc). This implies that

�ij�ij = 1, (12)

which is consistent with the invariance of the metric. This equation is a strong constraint
which will have a serious consequence on solving NC G2 structure. Equation (12) can be
solved by taking �ij as

�ij = (−1)εij . (13)

Here εij is a matrix such that εij + εji is equal to zero modulo 2, which is required by (8)–(10).
A possible solution is given by �ij = (−1) where εij = 1 modulo 2, corresponding to a flat
space. However, the invariance of the G2 structure leads to a solution where some �ij are
equal to 1. Using (7)–(13), one can solve �ij as follows:

�ij =




1 a a b b c c

a 1 a d e d e

a a 1 f g g f

b d f 1 b d f

b e g b 1 g e

c d g d g 1 c

c e f f e c 1




, (14)

where the entries of this matrix are integers such that

a, b, c, d, e, f, g = ±1 (15)

a = bdg (16)

a = bc = de = gf. (17)

Since the representation of the above algebra depends on this matrix, let us make two
comments. First, the algebra of NC G2 structure contains commutation and anticommutation
relations. Second, we find there are eight different solutions corresponding to the two different
choices of one of the integers, namely, a = ±1. They are classified as follows:

5 This could be extended to any discrete subgroup of G2 Lie group preserving the G2 structure.
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a b c d e f g

1 1 1 1 1 1 1
1 −1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1
1 1 1 −1 −1 −1 −1
−1 −1 1 −1 1 1 −1
−1 1 −1 1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1

. (18)

From this classification, one can learn that we have eight different representations solving the
NC G2 structure. The trivial one corresponds to all the parameters being equal to +1, which is
equivalent to having a complete set of commutative relations as a subset of possible solutions.

3. Matrix representation of NC G2 structure

In this section, we construct eight different representations {Yi}a,b,c,...,g corresponding to the
above NC G2 structure. Our representation will be given in terms of infinite-dimensional
matrices with the following block structure:

Yi =




Mi 0 0 0 · · ·
0 Mi 0 0 · · ·
0 0 Mi 0 · · ·
0 0 0 Mi · · ·
...

...
...

...
. . .


 , i = 1, . . . , 7. (19)

Here Mi , which are 27 ×27 matrices, satisfy the NC G2 structure given by (7).6 The constraint
�ii = 1 require that Mi should be symmetric matrices (i.e., Mmn = Mnm).

Our way to give explicit representations is based on the matrix realization of the
Grassmannian algebra of spinors SO(7) in 11 dimensions found in [5] although there are
some differences in our case. The entries of the matrices Mi are {+1,−1, 0}. The vanishing
coefficients are the same as in the symmetrized version of the matrix representation found in
[5]. However, the nonvanishing entries differ in their signs with respect to [5]. For each Mi ,
the signs are determined by the NC G2 structure, through �ij , in the following way. Indeed,
let us define a vector si that we shall call a vector of signs as

si = (+,�1i ) ⊗ . . . ⊗ (+,�(i−1)i ), i = 1, . . . , 7 (20)

with this product defined as

(a1, . . . , ak) ⊗ (b1, b2) ≡ (a1b1, . . . , akb1, a1b2, . . . , akb2). (21)

The kth element of this vector has the following expression:

(si)k =




i−1∏
�=1

��i 2�−1 + 1 + 2�p � k � 2�(p + 1) p = 0, . . . , 2i−(�+1) − 1

+ otherwise.

(22)

In terms of this (si)k , the matrices Mi can be expressed as

(Mi)mn =



(si)k m = k + 2iv n = m + 2i−1

k = 1, . . . , 2i−1 v = 0, . . . , 27−i − 1
0 otherwise.

(23)

Note that (si)k for a given matrix Mi is repeated over v.
6 Note that the size is related to the number of generators. Details are given in [5].
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It is easy to see that Mi are hermitic traceless matrices of 27 × 27 size that satisfy the
NC G2 algebra. In order to extend our results to NC T 7

/(
Z3

2

)
�

, we can construct eight
infinite-dimensional representations Yi using (19) by considering that the periodic boundary
condition is imposed at the ∞. Furthermore, our representation could solve a general algebra
satisfying

UiVj = �ijVjUi (24)

where � is a matrix containing real roots of the identity.

4. Link to matrix model of M-theory

In this section, we want to study an application of NC G2 structure in M-theory
compactifications. In particular, we discuss a possible link to matrix model of M-theory.
Before going ahead, let us first review such a formalism and then try to connect it to our
NC G2 structure solutions. Indeed, matrix model of M-theory is defined by maximally
supersymmetric U(N) gauge quantum mechanics [23]. In the infinite momentum frame, this
dynamic is described by the following SYM Lagrangian:

SD0 = −1

2gls
tr((Ẋi)

2 +
1

2
[Xi,Xj ]2 + 	t(i	̇ − �i[Xi,	]). (25)

Here Xi are nine Hermitian N × N matrices representing the transverse coordinates to N D0-
branes in type IIA superstring theory. For no commuting transverse coordinates, this leads to
fuzzy geometry in M-theory compactifications.

In what follows, we want to interpret seven of these Xi as operators satisfying our NC
G2 structure, while we take X8, X9 = 0. In this way, the vacuum equations of motion, for the
static solutions, read∑

i

[Xi, [Xi,Xj ]] = 2
∑

i

(1 − �ij )Xj , (26)

where X2N
i = IN×N .

A simple computation reveals that the commutative solution of G2 structure immediately
solves (26). In this case, the Xi matrices can be diagonalized and their N eigenvalues represent
the positions of the N D0-branes. However, the NC solutions do not satisfy (26). It is easy to
see by using the result given in (18). Indeed, for each case, one gets∑

i

[Xi, [Xi,Xj ]] = 2
∑

i

(1 − �ij )Xj =
{�=0 i �= j

0 i = j.
(27)

However, one can solve the equations of motion even for the NC solutions by using a physical
modification. Before doing that, let us first make a comment. We note that a singular
characteristic of NC G2 structure solutions corresponds to the case where one coordinate,
which represents a direction in the transverse space, commutes with the remaining ones.7

7 Our configuration for the non-commutative cases (R7/Z3
2)� is acting as a (R6/Z3

2)�̃ × R where

�ij =




1 . . . · · · 1
.
.
.

�̃i′j ′
.
.
.

1




, i, j = 1, . . . , 7, i′, j ′ = 2, . . . , 7. (28)

For a solution with [X1, Xi′ ] = 0 with X1 being coordinate of R and the rest of the solutions satisfying the algebra
Xi′Xj ′ = �̃i′j ′Xj ′Xi′ . This is a general structure for all of our NC solutions.
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In this way, the seven different solutions represent the different possible choices of this
direction. The commutative coordinate represents a flat direction in the potential. It turns out
that NC solutions could solve equations (26) if one introduces higher energy corrections in
the D0-brane action. This generates a constant quadratic contribution in the action which now
takes the following form:

S = SD0 + µjA
2
j . (29)

Setting µj = 1
4

∑
i (�ii − �ij ), (26) are now satisfied. Indeed, these mass terms are directly

induced by anticommutative contributions of NC G2 structure providing a massive potential
for six of the seven directions. For a given flat direction, let say X1, we have

µj =
{

0 j = 1
8 j = 2, . . . , 7.

(30)

To find a link with the matrix model of M-theory for NC solutions, we should find explicit
terms for couplings leading to mass terms in the above action, being related to NC G2 structure
in the regularized models. Alternatively, mass terms have been present in matrix models which
are a regularization of theories also containing more contributions in the action as cubic or
quartic terms. This is a common fact when fluxes are turned on in a theory as happens in
Myers effect [24] or in soft breaking terms [25].

On the other hand, the Hamiltonian of the supermembrane matrix model with non-trivial
central charge on a two torus has been studied in [3–5]. It is a non-commutative symplectic
super Yang–Mills coupled to transverse scalar fields of the supermembrane. It contains
quadratic, cubic and quartic contributions. However, if we restrict ourselves to the bosonic
sector and fix the gauge field Ar = 0, the regularized model is reduced to

SD0 = −1

g2
tr

(
1

4
[Xm,Xn]2 + (̂λrX

m)2

)
n,m = 1, . . . , 7 (31)

λ̂r
A

B = f A
r(B−r) r = (1, 0), (0, 1). (32)

This is the matrix model expansion of

{X̂r , X
m} = DrX

m, (33)

where X̂r are fixed backgrounds and minimal immersions of the supermembrane. These
backgrounds are responsible of the NC structure of the supermembrane and they are associated
with the non-trivial central charges [5, 9]. In spite of the formal analogy between the structure
of this theory and our model, there is an important difference. If we interpret the m transverse
coordinates as the ones satisfying our NC G2 structure and imposing λr = λ, the mass term
contribution has its origin in a particular set of the structure constants f C

AB of SU(N) although
in our case the mass terms are directly fixed by the NC G2 structure.

In a type IIB superstring, a D-instanton matrix model for a massive SYM, without extra
terms, has a fuzzy sphere and a fuzzy torus as possible solutions. In this case, the mass term is
negative leading to some instabilities, although it is free to be set to different values. However,
the origin of this extra term is not well understood [22]. In our model even if we find a matrix
model that allows us to fix its mass term to our constant value, this mass coupling also remains
unclear to us.

5. Conclusions

In this study, we have presented a NC G2 structure extending results of NC Calabi–Yau
manifolds. In this way, singularities of G2 manifolds can be deformed by NC algebras. Using
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a algebraic orbifold method, we have given an explicit analysis for building a NC G2 structure.
In particular, we have developed and solved the non-commutativity parameter constraint
equations defining such a deformed geometry. Then, we have shown that there are eight
possible solutions having similar features of Yang–Baxter equations. Using a combinatorial
argument, we have found eight matrix representations for such solutions.

Our results could be extended to Spin(7) holonomy manifold. The latter is an eight-
dimensional manifold with Spin(7) holonomy group, being a subgroup of GL(8,R) which
preserves a self-dual 4-form given by ϕ = dx1234 + dx1256 + dx1278 + dx1357 −dx1368 −dx1458 −
dx1467 − dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678. The invariance of such a
form, under a discrete group of Spin(7), leads to non-trivial constraint equations defining NC
Spin(7) manifolds.

A matrix model of M-theory has been found for the commutative solution of the G2

structure. It is a particular case of the deformed one. It satisfies trivially the solution to the
vacuum equation of motion. However, this is not the situation for the NC geometries. We
have shown that higher energy corrections are needed to satisfy such equations. These extra
quantities being mass terms give information about NC structure. We argue that they appear
as a consequence of the resolution of the singularity by introducing a NC algebra. The explicit
coupling that leads to these mass terms in the regularized matrix model remains unclear to
us. In order to find a complete connection with the matrix model for NC solutions, a more
extensive analysis would be required.

On the other hand, a paper [26] dealing with topological transitions in fuzzy spaces has
appeared recently. It also involves mass terms producing a topological change. Its suggested
origin is a Yukawa interaction term in the D0-brane action. It has a certain resemblance to our
case studied here, although we do not know if there could be an underlying relation between
both approaches. We leave these open questions for future work.
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Appendix

In this appendix, we want to show that our eight representations satisfy equation (7). To do
so, we should prove the following constraint equations:

M2
i = I (A.1)

MiMj = �ijMjMi i �= j. (A.2)

First, let us denote a nonzero coefficient (ai)mn, of the matrix Mi , by the position that occupy
in rows and columns (m, n)(si )k , where (si)k its sign.

(i) M2
i = I. It is easy to show this property. Indeed, from the construction of the matrices,

we can see that there are no repeated coefficients and there is only one nonzero coefficient per
row or column. Since the matrices are symmetric and traceless, the product between one term
and its adjoint is the only contribution per line to the diagonal. For a given matrix Mi , the
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signs depend only on k which is the same for both type of terms. The product of signs is then
the square of each sign. Since they are real square roots of the identity, we have

(Mi)
2
mn = (m, n)(si )k (n,m)(si )k = (m,m)+ = I. (A.3)

(ii) MiMj = �ijMjMi i �= j . In order to prove this statement we need to check the following:

(1) The nonzero coefficients of MiMj are the same to the ones of MjMi .
(2) The relative sign between each of the coefficients of the two products is sij = �ij sji .

In what follows, we suppose i < j without any lack of generality. The matrix Mi can be
expressed in terms of the nonzero coefficients as

{
(ai)mn,

(
a
†
i

)
mn

x
}

for n > m. The product
of coefficients then takes the following form:

(aiaj )mo = (ai)m(m+2i−1)(aj )(m+2i−1)(m+2j−1+2j−1=o). (A.4)

In an abbreviated notation, the product of the two matrices is given by

(MiMj) = {
aiaj , aia

†
j , a

†
i aj , a

†
i a

†
j

}
. (A.5)

If this relation is proved for aiaj and aia
†
j , then their adjoint terms will also satisfy it. Let us

first deal with aiaj . Indeed, the terms that contribute in the computations are

aiaj : (m, n)(si )k (n, o)(sj )l = (m, o)sij
(A.6)

ajai : (m, r)(sj )l (r, o)(si )q = (m, o)sji
. (A.7)

(1) We will not be concerned about the signs.
Given (ai)mn if there exists a (aj )no, then one can find (aj )mr and (ai)ro such that

(ai)mn(aj )no = (aj )mr(ai)ro.8

(a) Moreover, we can find (aj )mr once a nonzero coefficient exists in the line m, as there is
just one per line or column. In this way, we have (ai)mn, 0 < m � 2i−1 and 0 < m < 2j−1

as required for any matrix labelled by j . Then, the term exists and by definition is given
by r = m + 2j−1.

(b) On the other hand, (ai)ro exists if there is a coefficient in the line r of the matrix ai

satisfying r = k + 2iv′ for some v′. This implies that m = k + 2ivu. Using (a), we have
r = k + 2ivx for vx = vu + 2j−(1+i), so the term also exists and by definition o = r + 2i−1.

In fact, given (ai)mn, (ai)ro is a coefficient with the same k translated in 2j−(i+1) units of v.
For instance, the product can be represented, as in [5], by

ij : m
2i−1→ n

2j−1→ o (A.8)

ji : m
2j−1→ r

2i−1→ o. (A.9)

Since (a) and (b) are verified, then we have

(ai)mn(aj )no = (aj )mr(ai)ro. (A.10)

To prove (2) note that the relation between the signs is sij = �ij sji , being equivalent to
verifying that

(si)mn(sj )no = �ij (sj )mr(si)ro. (A.11)

8 Only for a given (ai )mn with v = 0 and i � j , it is guaranteed that (aj )no exists.
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For a given matrix, the signs depend only on k. This means that any value in j for a given k
has the same sign. Then, we have

(si)mn = (si)ro. (A.12)

It remains to describe (sj )no in terms of (sj )mr . By definition ski
= ∏

�′ ��′i , then we should
find ∏

�′
��′i = �ij

∏
q′

�q′j . (A.13)

However we do not need to know the explicit decomposition in terms of �. To obtain the
relation between the two signs, it is enough to know their relative values of k. We will denote
by kn the value associated with the sign (sj )no and, respectively, km to (sj )mr . Since (ai)mn is
given, the relative difference between n and m is known and we have

n = m + 2i−1 (A.14)

kj
n = 2i−1kj

m. (A.15)

Since j > i, and from the definition of sign product, one can check that �ij changes in sj in
each 2i−1 alternating values of kj . So, we have the following:

(sj )no = �ij (sj )mr . (A.16)

It follows that

sij = �ij sji . (A.17)

The same results can be obtained for
(
aia

†
j

)
after making minor changes to the argument.

Using (1) and (2), for any i and j , one gets

YiYj = �ijYjYi. (A.18)
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